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ABSTRACT

We propose an illumination invariant and rotation insensitive

texture representation based on a Markovian textural model.

A texture is aligned with its dominant orientation and textural

features are derived from fast analytical estimates of Marko-

vian statistics. We do not require any knowledge of illumina-

tion direction or spectrum. This makes our method suitable

for computer analysis of real scenes, where appearance of

materials depends on their orientation towards the illumina-

tion source. Our method is tested on the most realistic visual

representation of natural materials - the bidirectional texture

function (BTF), using data from the CUReT database, where

it outperforms the alternative leading illumination invariant

Local Binary Patterns (LBP) and texton MR8 methods, re-

spectively.

Index Terms— Illumination invariance, Markov random

fields, texture features

1. INTRODUCTION

Textures are important clues to specify objects present in a vi-

sual scene. Unfortunately, the appearance of natural textures

is highly illumination and view angle dependent. As a con-

sequence, most recent real materials texture based classifi-

cation or segmentation applications require multiple training

images [1] captured under all possible illumination and view-

ing conditions for each material class. Such learning is ob-

viously clumsy, expensive and very often even impossible if

required measurements are not available.

Even though Drbohlav and Chantler [2] allow a single

training image per class, they require uniform albedo surfaces

and the knowledge of illumination direction. The normalisa-

tion canceling lighting variations caused by the object geom-

etry [3] completely wipes out rough texture structures with all

its valuable discriminative information. It was demonstrated

[4] that for a grey–scale image of an object with Lambertian

reflectance and missing surface material interreflections there
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by the MŠMT grants 1M0572 DAR, 2C06019.

are no discriminative functions that are invariant to change of

illumination direction. Local Binary Patterns [5] (LBP) are

popular illumination invariant features, but too noise sensi-

tive [6]. The rotation invariant texton representation [1] based

on MR8 filter responses have been extended to incorporate

colour information and to be illumination invariant [7]. An-

other approach [8] generates unseen training images using the

photometric stereo, which requires three mutually registered

images with different illumination direction for each material.

Rotation invariance [9] and normalisation [10] was proposed

without illumination invariance.

We introduce the efficient illumination invariant mul-

tispectral texture representation, which is simultaneously

insensitive to texture rotation. The recognition accuracy is

tested on the CUReT texture database [11], which includes

samples with varying illumination direction and also lim-

ited viewpoint changes. The employed features are simul-

taneously invariant to illumination brightness and spectrum

changes, and robust to Gaussian noise degradation [6].

2. TEXTURE ANALYSIS

The scheme of texture analysis algorithm is depicted in Fig. 1.

We start with the estimation of the dominant texture orienta-

tion. If the texture is significantly directional, it is rotated ac-

cording to its dominant orientation. The texture is factorised

into K levels of the Gaussian pyramid and subsequently each

pyramid level is modelled by a Markov Random Field type

of model - the Causal Autoregressive Random (CAR) model.

The CAR model parameters are estimated and illumination

invariants are subsequently computed from them. Finally, the

illumination invariants from all the models are concatenated

into one feature vector.

2.1. Orientation normalisation

The dominant texture orientation is estimated from the his-

togram of gradient orientations. Similar algorithm is used to

determine orientation of SIFT keypoints [12]. The purpose

of this preprocessing is detection of textures with strong ori-

entations and their rotation alignment. The rotation of tex-
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Fig. 1. Texture analysis algorithm

tures with less significant directions or undirectional textures

is not required, because they are aptly represented by the CAR

model.

The input texture is converted into greyscale image G
and its gradient ∇G(r1, r2) = [G(r1 + 1, r2) − G(r1 −
1, r2), G(r1, r2+1)−G(r1, r2−1)] is computed at each pixel

r = (r1, r2) where the first component r1 of the multiindex

is the row and r2 is the column index, respectively.

Subsequently, histogram of gradient orientations is com-

puted. Each gradient orientation is weighted by its magnitude

and bilinear interpolation is used to assign gradient weight

into two adjacent bins. All orientations are fitted into the

interval [0◦, 180◦). The reason is homogeneity of textures,

where gradients in some direction are followed by gradients

in the opposite direction. We use histogram with 36 bins and 6

pass histogram smoothing (averaging of three adjacent bins).

The texture is considered to have a dominant orientation if

the height of the second highest peak in the histogram is lower

than 80% of the highest peak. If there is no second highest

peak, the sum of the highest peak bin and its two adjacent

bins have to be grater than 150% of the expected value for

three bins.

2.2. CAR Model

Let us assume that each multispectral texture is composed of

C spectral planes (usually C = 3). Yr = [Yr,1, . . . , Yr,C ]T

is multispectral pixel at location r . The spectral planes are

either modelled by 3-dimensional CAR model or mutually

decorrelated by the Karhunen-Loeve transformation (Princi-

pal Component Analysis) and subsequently modelled using

a set of C 2-dimensional CAR models.

The CAR representation assumes that the multispectral

texture pixel Yr can be modelled as linear combination of

its neighbours:

Yr = γZr + εr , Zr = [Y T
r−s : ∀s ∈ Ir]T (1)

where Zr is the Cη × 1 data vector with multiindices r, s, t,
γ = [A1, . . . , Aη] is the C × C η unknown parameter

matrix with submatrices As. In the case of C 2D CAR

models stacked into the model equation (1) the parameter

matrices As are diagonal otherwise they are full matri-

ces for general 3D CAR models. Some selected contextual

causal or unilateral neighbour index shift set is denoted Ir

and η = cardinality(Ir) . The white noise vector εr has

normal density with zero mean and unknown constant covari-

ance matrix, same for each pixel. Additionally for 2D CAR

model, we assume uncorrelated noise vector components.

Given the known CAR process history Y (t−1) = {Yt−1,
Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter estimation

γ̂ can be accomplished using fast, numerically robust and

recursive statistics [13]:

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =
(∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T∑t−1

u=1 ZuYu
T ∑t−1

u=1 ZuZu
T

)

=

(
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1)Vzy(t−1) ,

where V0 is a positive definite matrix (see [13]).

2.3. Illumination Invariant Features

We assume that the two images Ỹ , Y of the same texture

and view position differing only in illumination can be lin-

early transformed to each other: Ỹr = B Yr, where Ỹr, Yr

are multispectral pixel values at position r and B is a trans-

formation matrix. This linear formula is valid for changes in

brightness and illumination spectrum, with Lambertian sur-

face reflectance, or with model including specular reflectance

component (e.g. dichromatic reflection model [14]). With

the previous assumptions, the following illumination invari-

ant features were derived [6]:

1. trace: trAm, m = 1, . . . , η K

2. eigenvalues: νm,j of Am, m = 1, . . . , η K,
j = 1, . . . , C

3. α1: 1 + ZT
r V −1

zz Zr ,

4. α2:

√∑
r (Yr − γ̂Zr)

T
λ−1 (Yr − γ̂Zr) ,

5. α3:

√∑
r (Yr − μ)T

λ−1 (Yr − μ) ,
μ is the mean value of vector Yr,
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Fig. 2. Classification accuracy for different number of ran-

dom training images, mean values were computed over 1000

repetitions.

Feature vectors are formed from these illumination invariants,

which are easily evaluated during the CAR parameters esti-

mation process. In the case of 2D models, invariants 3. – 5.

are computed for each spectral plane separately. We have also

experimented with combination of two models, where each

factor of Gaussian pyramid is modelled by two models with

different neighbourhood Ir. In that case, illumination invari-

ants for both models are included in the final feature vector.

The distance between two feature vectors is computed us-

ing the L1 norm or alternatively with fuzzy contrast [15] in

its symmetrical form FC3 (see details in [16]). However, the

fuzzy contrast requires mean and standard deviation of each

feature, which was estimated on the whole image database.

3. RESULTS

In the experiments, we focus on robustness of proposed

texture representation under varying illumination direction

and also limited viewpoint changes, which are compensated

by texture rotation. These conditions are quite close to real

world, where materials in a scene are observed under different

viewpoint and illumination conditions.

We evaluated the texture recognition accuracy on the

Columbia-Utrecht Reflectance and Texture Database (CUReT)

[11] to be able to compare our results with alternative ap-

proaches even if this database is already overcome by BTF

measurements from the University of Bonn. This first BTF

database consists of 61 real-world materials captured under

different combinations of viewing and illumination direc-

tions. Dataset provided by Varma and Zisserman [1] con-

sists of 61 materials, each with 92 samples with resolution

Table 1. Classification accuracy [%], using 4 random training

images per texture.

method performance features

[7] MR8 58 600

[7] MR8-NC 54 600

[7] MR8-INC 60 600

[7] MR8-LINC 67 600

[7] MR8-SLINC 57 600

Gabor features 61.7 144

Opponent Gabor features 68.7 252

LBP8,1+8,3, grey 66.9 512

LBP8,1+8,3, RGB 70.9 1536
LBPu

16,2, RGB 68.7 729

LBPriu2
16,2 , RGB 64.2 54

LBP8,1+8,3, opponent 57.4 1536

LBPu
16,2, opponent 69.7 729

2D CAR-KL, L1 75.6 260

2D CAR-KL, FC3 75.1 260

2D CAR-KL 6+3, L1 77.0 392
2D CAR-KL 6+3, FC3 77.6 392

3D CAR, L1 69.7 236

3D CAR, FC3 67.6 236

3D CAR 6+3, L1 72.4 344

3D CAR 6+3, FC3 72.6 344

200 × 200 pixels. We follow the experimental setup [7],

where the classification accuracy is tested with randomly

selected training samples and the SVM classifier. The num-

ber of training samples per material decreases from 8 to 1.

The mean and standard deviation of classification accuracy is

computed over 1000 repetitions (random selections). On the

contrary, we use only simple nearest neighbour classifier.

Additionally to rotation and illumination invariant MR8

variants [7], we have compared in Tab.1 the performance of

some other most frequented features. The Gabor features

[17], which are rotation variant statistics of Gabor filters re-

sponses, were computed separately for each spectral plane

and concatenated into the feature vector. The Opponent Ga-

bor features [18] are extension that analyse relations between

spectral channels. The distances for Gabor features requires

standard deviation of features, which have been estimated on

the whole image database. Local Binary Patterns [5] (LBP)

are histograms of thresholded micro patterns, we have tested

variants LBP8,1+8,3, LBPu2
16,2 and rotation invariant LBPriu2

16,2 .

They were computed either on grey-scale images or on each

spectral plane of RGB colour space or opponent colour space.

The CAR features were computed for K = 4 levels

of Gaussian pyramid, using the 6-th order hierarchical neigh-

bourhood. For combination of two models we use 6-th and

3-th order neighbourhoods, which consist in η = 14 and

η = 6 neighbours, respectively.
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Fig. 2 shows mean recognition rates over 1000 random

repetitions. It is directly comparable to results [7], where

recognition rate for MR8-LINC monotonously decreases, ap-

proximately, from 75% to 45% for 8 to 1 training samples.

Our best performance, which is combination of two models

(2D CAR-KL 6+3), goes from 86% to 51% with standard de-

viations from 0.6% to 1.5% .

The exact mean recognition rates together with size of

feature vectors are displayed in Tab. 1, standard deviations

are below 1%. The best performance 77% was again achieved

with 2D CAR-KL 6+3 models, followed by 2D CAR-KL

model with 75.6%, both with L1 distance. The best alter-

native features were LBP8,1+8,3 with average performance

70.9% and 4 times larger feature vector.

4. CONCLUSIONS

We have compared the proposed illumination invariant tex-

tural representation on the classification of textures captured

under varying illumination directions.1 These BTF textures

represent visual properties of sixty different real-world ma-

terials. Our illumination invariants are efficiently computed

Markovian texture statistics. The overall method is insensitive

to texture rotation and uses low number of features. The clas-

sifier can be learned from only one training image per texture

and requires no knowledge of illumination direction or the

spectrum. The classifier was tested on the database CUReT,

where it outperforms alternative leading illumination invari-

ant LBP and texton MR8 methods.
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